首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   4篇
  国内免费   9篇
大气科学   22篇
地球物理   3篇
海洋学   1篇
综合类   1篇
  2023年   1篇
  2021年   1篇
  2014年   1篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有27条查询结果,搜索用时 18 毫秒
1.
GPS掩星观测的发展及其在气象业务中的应用现状   总被引:5,自引:0,他引:5  
马再忠  郭英华  王斌 《气象学报》2011,69(1):208-218
GPS无线电掩星探测技术已经发展成为一种强有力的、相对经济的观测全球大气的方法.多年对GPS/MET概念卫星、CHAMP和SAC-C等GPS掩星观测的研究表明,GPS掩星观测资料与其他卫星资料相比具有很高的观测精度和垂直分辨率等优点,并且GPS掩星观测不受天气状况的影响,因此对其在天气预报及气候的应用有独特的优势.GP...  相似文献   
2.
为进一步了解季风对于水汽及其它大气成分的输送作用,利用美国Aqua卫星上AIRS反演的甲烷(CH4)和MODIS反演的水汽、云高和云量等卫星观测资料,分析了2003至2010年中国青藏高原上空CH4、水汽和云在季风期间的变化及其与季风指数的关系。研究发现:夏季(6月至9月)高原上空水汽、云量和云顶高度的变化与季风指数有很好的相关;在强对流影响下,输送到高原上空的水汽增多,引起云量增多,云顶高度增加,而向上输送的甲烷引起高原上空CH4浓度增加,并在青藏高压强大的反气旋的阻塞下CH4不断积累,在季风期的后半程维持一个高值,但最大值出现在8月底至9月初,比季风指数的峰值晚近一个月。随着季风减退和青藏高压的消失,甲烷的高值快速消失。由此可见,夏季青藏高原的强对流输送无疑是甲烷高值形成的主要动力机制之一。cH4作为一种长寿命的温室气体,有潜力作为一种示踪气体来帮助研究季风和季风期间高原上空强大的反气旋动力机制的变化。  相似文献   
3.
The association of typhoon tracks over the western Pacific with the low-frequency wind-field pattern of atmospheric intraseasonal (30-60 days) oscillation at 850 hPa is further studied by using observational data analyses. Comparative analyses of the composite wind fields at 850 hPa, contrasting the atmospheric intraseasonal oscillation (ISO) with the original circulation, show that the typhoon tracks are closely related to the wind pattern of the ISO but are not obviously related to the original wind fields. Case studies of two typhoons in 2006 also show that the low-frequency wind-field pattern, particularly the maximum-value line (belt) of low-frequency cyclonic vorticity at 850 hPa, is closely related to the typhoon track. Therefore, the low-frequency circulation pattern and the maximum-value line (belt) of low-frequency cyclonic vorticity at 850hPa can be used to predict typhoon tracks over the northwestern Pacific.  相似文献   
4.
In this paper we document the correlationship between sea surface temperature(SST) and low level-winds such as sea level wind and 850 hPa wind in the South China Sea(SCS) based on COADS(1958-1987) and ECMWF objective analysis data(1973-1986).Further statistical analyses tell us that there is a fixed SCS basin mode for variations both of SST and low-level winds in the region on the interannual time scale due to air-sea interactions.A simplified,coupled model that is designed following the McCreary and Anderson's(1985) model and includes the feedback between the upper ocean and the circulation of East Asian monsoon demonstrates an interannual oscillation in the coupled air-sea system,which is similar to the observations in the SCS.  相似文献   
5.
A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, is implemented into the National Climate Center regional climate model (RegCM_NCC). The effects of the modified surface runoff scheme on RegCMANCC performance are tested with an abnormal heavy rainfall process which occurred in summer 1998. Simulated results show that the model with the original surface runoff scheme (noted as CTL) basically captures the spatial pattern of precipitation, circulation and land surface variables, but generally overestimates rainfall compared to observations. The model with the new surface runoff scheme (noted as NRM) reasonably reproduces the distribution pattern of various variables and effectively diminishes the excessive precipitation in the CTL. The processes involved in the improvement of NRM-simulated rainfall may be as follows: with the new surface runoff scheme, simulated surface runoff is larger, soil moisture and evaporation (latent heat flux) are decreased, the available water into the atmosphere is decreased; correspondingly, the atmosphere is drier and rainfall is decreased through various processes. Therefore, the implementation of the new runoff scheme into the RegCMANCC has a significant effect on results at not only the land surface, but also the overlying atmosphere.  相似文献   
6.
In this paper,the relationship between a pair of low-frequency vortexes over the equatorial Indian Ocean and the South China Sea(SCS) summer monsoon onset is studied based on a multi-year(1980-2003) analysis.A pair of vortexes symmetric about the equator is an important feature prior to the SCS summer monsoon onset.A composite analysis shows that the life cycle of the pair of vortexes is closely associated with the SCS summer monsoon onset.The westerly between the twin cyclones is an important factor to the SCS summer monsoon onset process.  相似文献   
7.
Previous studies have indicated that the stratospheric quasi-biennial oscillation (QBO) has a global impact on winter weather, but relatively less attention has been paid to its effect in summer. Using ERA5 data, this study reports that the QBO has a significant impact on the tropospheric circulation and surface air temperature (SAT) in the extratropics in Northeast Asia and the North Pacific in early summer. Specifically, a QBO-induced mean meridional circulation prevails from Northeast Asia to the North Pacific in the westerly QBO years, exhibiting westerly anomalies in 20°–35°N and easterly anomalies in 35°–65°N from the lower stratosphere to troposphere. This meridional pattern of zonal wind anomalies can excite positive vorticity and thus lead to anomalous low pressure and cyclonic circulation from Northeast Asia to the North Pacific, which in turn cause northerly wind anomalies and decreased SAT in Northeast Asia in June. Conversely, in the easterly QBO years, the QBO-related circulation and SAT anomalies are generally in an opposite polarity to those in the westerly QBO years. These findings provide new evidence of the impact of the QBO on the extratropical climate, and may benefit the prediction of SAT in Northeast Asia in early summer.摘要本文研究了平流层准两年振荡 (QBO) 对东北亚-北太平洋地区初夏对流层环流和地表气温的影响. 在QBO西风位相年, 东北亚至北太平洋地区存在一支由QBO引发的平均经向环流异常, 该经向环流异常可在东北亚至北太平洋地区激发正涡度, 并形成异常气旋式环流. 气旋左侧出现的异常偏北风导致6月东北亚地表气温下降. QBO东风位相年的结果与西风位相年大致相反. 这些结果为QBO对热带外地区天气,气候的影响提供了新的证据, 并为东北亚初夏地表气温的预测提供了新的线索.  相似文献   
8.
Simulated variability of the Atlantic meridional overturning circulation   总被引:11,自引:3,他引:11  
To examine the multi-annual to decadal scale variability of the Atlantic Meridional Overturning Circulation (AMOC) we conducted a four-member ensemble with a daily reanalysis forced, medium-resolution global version of the isopycnic coordinate ocean model MICOM, and a 300-years integration with the fully coupled Bergen Climate Model (BCM). The simulations of the AMOC with both model systems yield a long-term mean value of 18 Sv and decadal variability with an amplitude of 1–3 Sv. The power spectrum of the inter-annual to decadal scale variability of the AMOC in BCM generally follows the theoretical red noise spectrum, with indications of increased power near the 20-years period. Comparison with observational proxy indices for the AMOC, e.g. the thickness of the Labrador Sea Water, the strength of the baroclinic gyre circulation in the North Atlantic Ocean, and the surface temperature anomalies along the mean path of the Gulf Stream, shows similar trends and phasing of the variability, indicating that the simulated AMOC variability is robust and real. Mixing indices have been constructed for the Labrador, the Irminger and the Greenland-Iceland-Norwegian (GIN) seas. While convective mixing in the Labrador and the GIN seas are in opposite phase, and linked to the NAO as observations suggest, the convective mixing in the Irminger Sea is in phase with or leads the Labrador Sea. Newly formed deep water is seen as a slow, anomalous cold and fresh, plume flowing southward along the western continental slope of the Atlantic Ocean, with a return flow of warm and saline water on the surface. In addition, fast-travelling topographically trapped waves propagate southward along the continental slope towards equator, where they go east and continue along the eastern rim of the Atlantic. For both types of experiments, the Northern Hemisphere sea level pressure and 2 m temperature anomaly patterns computed based on the difference between climate states with strong and weak AMOC yields a NAO-like pattern with intensified Icelandic low and Azores high, and a warming of 0.25–0.5 °C of the central North Atlantic sea-surface temperature (SST). The reanalysis forced simulations indicate a coupling between the Labrador Sea Water production rate and an equatorial Atlantic SST index in accordance with observations. This coupling is not identified in the coupled simulation.  相似文献   
9.
Summary Climatological characteristics associated with summer monsoon onset over the eastern Bay of Bengal (BOB) are examined in terms of the westerly-easterly boundary surface (WEB). The vertical tilt of the WEB depends on the horizontal meridional temperature gradient (MTG) near the WEB, under the constraint of the thermal wind balance. The switch in the WEB tilt firstly occurs between 90 and 100°E during the first pentad of May. At this time the 850 hPa ridgeline splits over the BOB and heavy rainfall commences over the eastern BOB, indicating the onset of the BOB summer monsoon (BOBSM). The area-averaged MTG (200–500 hPa) is proposed as an index to define the BOBSM onset. A comparison of the onset determined by the MTG, 850 hPa zonal wind, and outgoing longwave radiation (OLR) shows that the MTG index is the most effective in characterizing the interannual variability of the BOBSM onset. Strong precursor signals are found prior to an anomalous BOBSM onset. Composite results show that early (late) BOBSM onset follows excessive (deficient) rainfall over the western Pacific and anomalous lower tropospheric cyclonic circulation which extends zonally from the northern Indian Ocean into the western Pacific, and strong (weak) equatorial westerly anomalies in the preceding winter and spring. Prior to an early (late) BOBSM onset, significant positive (negative) thickness anomalies exist around the Tibetan Plateau, accompanied by anomalous upper tropospheric anticyclonic (cyclonic) circulation. The interannual variations of the BOBSM onset are significantly correlated with anomalous sea surface temperature related to ENSO. These occurs through changes in the Walker circulation and local Hadley circulation, leading to middle and upper tropospheric temperature anomalies over the Asian sector. The strong precursor signals around the Tibetan Plateau may be partly caused by local snow cover anomalies, and an early (late) BOBSM onset is preceded by less (more) snow accumulation over the Tibetan Plateau during the preceding winter.  相似文献   
10.
The intraseasonal variations of the Yangtze rainfall over eastern China and its related atmospheric circulation characteristics during the 1991 summer are examined based on the gauge-observed rainfall and the NCEP/NCAR reanalysis data. Wavelet analysis shows that during the 1991 summer, the active and break sequences of rainfall over the middle and lower Yangtze Basin are mainly regulated by an oscillatory mode with a period of 15–35 days. An investigation of the circulation features suggests that the 15–35-day oscillation is associated with an anomalous low-level cyclone (anticyclone) appearing alternatively over the northern South China Sea (SCS) and the Philippine Sea, and related to a northeastward (southwestward) shift of the western Pacific subtropical anticyclone over the SCS, leading to a lower tropospheric divergence (convergence) over the Yangtze Basin. In the upper troposphere, the 15–35-day oscillation exhibits a dipole anomaly characterized by an anomalous cyclone (anticyclone) over eastern China and an anomalous anticyclone (cyclone) over the northern Tibetan Plateau, resulting in a southwestward shrinking (northeastward extending) of the South Asian anticyclone, and forming a convergence (divergence) over eastern China. Such a coupled anomalous flow pattern between the lower and upper troposphere favors large-scale descending (ascending) motion, and hence reduced (enhanced) rainfall over the Yangtze Basin. Dynamically, the intraseasonal variations in the Yangtze rainfall are mainly determined by the coupling between the low-level relative vorticity and the upper-level divergence. In the middle troposphere, the 15–35-day oscillation of the subtropical high is originated over the central North Pacific north of Hawaii, then propagates westward to the SCS-Philippine Sea, and finally modulates the intraseasonal variations of the Yangtze rainfall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号